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PLASTICITY OF METALS—MATHEMATICAL
THEORY AND STRUCTURAL
APPLICATIONS

By D. C. DRUCKER,* Assoc. M. ASCE

SynNopsIs

A brief analysis is given of the philosophy and practice of engineering design.
The importance of plasticity in most elastic design is emphasized and the use of
elementary plastic analysis is illustrated. Applications to beam and truss
frameworks (limit design and ‘“‘shakedown”) and structural stability are dis-
cussed. The great difference between plasticity and nonlinear elasticity is
shown by simple examples. A short description is given of the development
of mathematical theories of plasticity and the experimental results on which
they are based. The necessity for additional correlated experimental and
analytical investigation is made apparent and the author’s opinion of the
initial direction this work should take is stated.

With the exception of the section which demonstrates that some members
may unload when all loads applied to a structure increase in ratio, the paper
presents a specialized survey and interpretation of existing information only.

Evastic DESIGN AND PrAsTICITY

The usual civil engineering design apparently assumes completely elastic
behavior, Working stresses are well below the elastic limit; internal stresses
and accompanying deformations are computed from formulas such as

- = # ..... T (10)
and
PL
A= AT e (1)

—which are based on Hooke’s law.

Nore.—Written comments are invited for publication; the last discussion should be submitted by
February 1, 1951.
1Associate Prof., Eng., Brown Univ., Providence, R. L.




2 _ PLASTICITY OF METALS

Elastic behavior seems to be postulated for main members and also for the
welded or riveted connections that join them. Actually, however, as is well
known, the usual specifications are based on the explicit or implicit requirement
of high ductility. For example, the assumption of uniform distribution -of
load among rivets in a tension group is obviously in error in the elastic range
where the end rivets take far more stress than their share. Stress concentra-
tions produced by abrupt changes in section as from flange to web (shear) or
by cover plates, rivet holes, cutouts of various kinds, welded connections for
fixed-end beams, stiffeners, or bearing plates—in fact, just about all the real
details of the distribution of stress—are ignored. Duectility or plastic defor-
mation has the effect of smoothing out all these irregularities for static loading
so that they can safely be forgotten. However, this elimination of the high
spots does not happen until appreciable plastic deformation takes place;
marked stress concentrations are usually present at working loads. Mechanical
engineers especially have been forced to allow for them in design where there
is danger of fatigue failure.

In some cases, plastic action is used directly to produce desired stresses or
to keep stresses within the elastic range. Boiler tubes are expanded plastically
by interior rolls to produce positive pressure between them and the plates
through which they pass; cold rolled metal is used instead of hot rolled metal;
shot peening is employed to induce residual surface compression and thus to
reduce the danger of fatigue; and springs are pre-set.

Thus, closer examination shows that there is often little validity in the
concept of purely elastic design. Plasticity is almost always important.
This statement does not mean that elasticity is useless except where fatigue
is important. On the contrary, practically all experience on actual structures
and experimental data on structures, models, and components have been
correlated with nominal (or elastic) stress calculations. Specifications are
based on this accumulation of knowledge so that conventional designs for
conventional structures must of necessity prove to be satisfactory.

For this very reason, if designs must be pushed to the limit to save material,
or if the structure contains novel features, the usual specification may not
provide an adequate guide. The resulting factor of safety may be excessive
or too small. An experienced and extremely capable engineer may be able to
extrapolate his knowledge correctly, but it is clear that a more formal and
precise approach is desirable. The first question to be decided is what the
structure is to be designed against; certainly not against elastic breakdown
at any point, for the result would be a very uneconomical design which would
not make proper use of the known value of ductility. Clearly there should
be an adequate factor of safety against complete failure; but of much more
importance when structural steel or aluminum is used is the factor of safety
against the excessive deformation which generally occurs long before failure,
sometimes of course in the elastic range as in ceiling beams. A simple tension
member will certainly deform unduly in most applications when its yield
strength is exceeded, but a beam or shaft usually does not deform too much
when the extreme fiber yields. Similarly, the yielding of one member of a
statically indeterminate truss or of one cross section of a statically indeter-
minate beam does not necessarily cause excessive deflection of the structure.
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SiMpLE Prastic DEsieN

A number of interesting and technically important conclusions can be
drawn from the consideration of a material termed ideally plastic, one which
does not work harden but which yields and continues to flow under constant
_stress. Structural steel seems to be in this category at the beginning of the
plastic range, but this phenomenon is illusory. Initial yielding is inhomo-
geneous; no part of the material has a strain given by a point in the practically \
flat part, C, of the stress-strain diagram (Fig. 1). Such a point denotes only
the effect of averaging over the gage length some material which is elastic
(point A) and some material which has slipped appreciably (point B). However,
regardless of the physical validity of such a theory of ideal plasticity for a
particular metal, it is simple and often indicates the answer for work-hardening
metals.
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Fi1g. 1.—StrEss-STRAIN DIAGRAM FOR F16. 2.—CoMPARISON OF ErnAstic AND Prasrtic
STRUCTURAL STEEL PROPERTIES

Elastic: (a) Better Than (b); for Given Moment, Maximum

Stress for (b) Is ¥ 2 Times That for (c). Ideally Plastic:
(5) Better Than (a); Moment Capacity of (¢) Only
6% More Than (b)

Some differences between elastic and plastic design show up strongly in the
pure bending of a beam of square cross section and of a beam of modified square
cross section (Fig. 2). The maximum stress, ¢, produced by a pure moment
M in an elastic beam is M ¢/I in which ¢ is the distance from the neutral axis
to the extreme fiber and I is the moment of inertia about the neutral axis.
The triangular tip of Fig. 2(b) contributes more to ¢ than to I so that, for a
given moment, the maximum stréss in section (b) is higher than that in section
(a). A much greater difference is found between sections (b) and (¢) because
I is the same for both but the values of ¢ are in the ratio V2 to 1. In the
(ideal) plastic range the maximum resisting moment for symmetric sections is
twice the product of the yield stress, o, the area between the neutral axis and
one extreme fiber, and the distance of the centroid of the area from the neutral
axis. The ratio for Fig. 2(b) to Fig. 2(c) is just the ratio of the centroidal
distances or 3 V2/4 = 1.06—a much smaller difference than in the elastic
case. Now section (b) appears preferable to section (a). ’

Limir DesieN

The advantage of considering the plastic region lies in the economy of
design that becomes possible. It has long been advocated for both simple
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cases and for statically indeterminate structures by J. A. Van den Broek, M.
ASCE, under the designation, limit design.? Coupled with the assumption of
ideal plasticity, the design is not only more efficient but the procedure. is
considerably simplified. The fixed-end beam under uniform load, Fig. 3(a),
is a good example. Successive moment diagrams are shown for increasing
values of load. In the elastic range and for an I-beam, almost until the end
moments reach their limiting value Mz, the points of inflection remain the
same and the end moment is numerically twice the center moment. Further
increase in load after My is reached cannot increase the end moments because
of the assumption of ideal plasticity. The center moment continues to rise
until it too reaches My if the beam is of constant eross section. No additional
load can then be supported. There is obviously no need to follow the process
to calculate Wax. The diagram showing three plastic hinges, points at which
M = My or — My, enables direct computation.
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Fra. 3.—~Lmrr DesioN—IDEAL PrLaAsTICITY ASSUMED

Similarly, in the case of the three tension bars, Fig. 3(b), there is no need
to solve the statically indeterminate problem. - The limit load is directly

Prox =0y A1+ 20, 40c08a. ... coiiiiinan, @)

in which o, is the flow stress. In the first case (and usually in the second),
the limit load will be considerably larger than the load that causes plastic
deformation to start.

As must be expected, the reduction of complicated problems to static
determinacy involves a sacrifice. The deformation of the structure does not

2 *“Theory of Limit Design,” by J. A. Van den Broek, John Wiley & Sons, Inc., New York, N. Y., 1948.
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have to be considered explicity. Conversely, the deformation is not calculated
and there is always the most vital question of whether or not it is excessive and
therefore the unsettled doubt exists as to the validity and the applicability of
the assumption of ideal plasticity.

Alexander Hrennikoff, Assoc. M. ASCE, and others®4 have studied this
question by taking the actual stress-strain curve into account. Onee this is.
done, and the details of plastic action are examined more closely, other serious

~ limitations appear. No mention has been made of the shear in the plastic
beam of Fig. 3(a). Neglecting it would not be serious if the beam were rec-
tangular in cross section because of its necessarily small magnitude. On the
contrary, in I-beams, or more especially plate girders, the web is designed for
shear. It isrelatively thin, and the shear stress value may be high, so high that
plastic deformation will begin at the web-flange junction rather than at the
extreme fiber (see Fig. 4). ‘

23 R by

High shear stress :
High bending stress 1
{| Shear stress concentrates
' 3_ toward neutral axis

(a) ’ ()]

F1a. 4.—~BENDING AND SHEAR

Furthermore, as plastic flow continues, the shear stress at the neutral axis
increases and may well cause complete yielding of the section before the
conventional limit load is reached. The answers to the foregoing questions
require a much more complete theory of plasticity. In the subsequent dis-
cussion, it will be seen that, at present, the answers to many fundamental
problems are still not known. ’

Most of these same unanswered queries do not apply to statically inde-
terminate trusses or to pin-connected frameworks. Each member is subjected
to simple tension or compression and ideal plasticity is probably a good enough
assumption. A limit design for a given loading would be a satisfactory answer.
The straightforward approach is to apply the loading slowly as given, deter-
mine which member yields first, increase the loading, and find the next member
to yield, continuing the process until enough members have yielded to cause
failure. This process may well be tedious as it involves at least one, and
possibly many, solutions of statically indeterminate elastic problems. A short
cut should be found. In some cases it will be apparent which bars will yield to
cause failure and the laborious calculations can be replaced by a simple statics
computation. In many cases, however, there will be a few reasonable alter-
natives and some set procedure is required for deciding which of the statics
computations is correct. H. J. Greenberg has proved the statement of S. M.

@ “Theory of Inelastic Bending with Reference to Limit Design,” by Alexander Hrennikoff, Transac-
tions, ASCE, Vol. 113, 1948, pp. 213-247.

¢ “Ueber das Verhalten statisch unbestimmter Konstruktionen aus Stahl nach Ueberschreitung der
Elastizitaetsgrenze,” by W. Prager, Bauingenieur, Vol. 14, 1933, pp. 65-67.
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Feinberg® that any body (and therefore a structure in particular) will support
the maximum load that it possibly can. Failure will not occur if any stable
system of forces exists in the bars that will satisfy the equations of equilibrium.
This is an extension of the dictum by N. C. Kist.®
William Prager and P. 8. Symonds, at Brown University in Providence,
R. I, have re-examined the basic principles that must apply to structures.
In addition to limit design they explored the interesting problem of ‘‘shake-
down,” which arises when a structure such as a railway bridge is subjected
to loads that change in magnitude between fixed limits. Each panel point
load is assumed to vary independently of all other loads in any manner between
a low value and a high value any number of times. The problem is whether
or not, if plastic deformation does oceur at some loadlng, eventually the structure
will ad;ust itself and never again yield anywhere in tension or compression.
Again, all the answers to

\ % - : this very practical problem
% N are not yet known but

e 7( For an interesting and useful

r, F F, An elasiic ‘ o geometrical method is be-
@ (strecs soint) —/ﬂ K ing applied.” It may be

P illustrated by reference to

~ Stress the simple indeterminate

\\/ point structure of Fig. 3(b).

P — Assume that the load P
é;,~‘°_ /s N2 alters in magnitude, and

$ s’§ S possibly changes in sign, in

A any manner between

. F16. 5—SHAKEDOWN + Pmax (tension) and Pmin

-(compression). Calling
the force in the central bar F and the force in each of the outer bars F,, Fig.
5, the equation of equilibrium is

P=F+4+2F,cosa............ [ 3)

In the elastic range, the second equation is determined by the deformation of
the structure as ‘

F, L,
FL AE,
JTE-COSC! .................. e e (4a)
or . '
A,E, L
F, (AEL cosa)F ................... (4b)

A coordinate system with axes F and F, shows the behavior of the structure.
The deformation equation plots as a straight line through the origin, with slope

5 ““The Principle of Limiting Stress,” by 8. M. Feinberg, Prikladnaya Mathematika i Mekhanika, Vol.
12, 1948, p. 63-68. ’

1948‘ e ngeory of Limit Design,” by J. A. Van den Broek, John Wiley & Sons, Inc., New York, N. Y.,
)4

7¢Problem Types in the Theory of Perfectly Plastic Materials,” by W, Prager, J. 1 of the A
naufical Sciences, Vol. 15, 1948, pp. 337-341. Y e ournal of the Aero-
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%”—%TL cos @. 'The equation of equilibrium for a given value of P plots as a

straight line with a negative slope 5 c(l) . The stress point or intersection of

the two lines gives the solution F, F,. As the tensile force P increases in mag-
nitude, the equilibrium line does not change in slope but simply moves parallel
to itself, and the stress point moves straight out. This peaceful state of affairs
is rudely interrupted by the onset of plastic action: F cannot exceed Fp and F,
cannot exceed F,,p on the assumption of ideal plastlclty These limits plus
those for compression form a yield rectangle and the stress point cannot go
outside it. As the load increases, the stress point moves out along the defor-
mation line, hits the yield line, and moves along it. Unloading, or reducmg
the load, brings the stress point back along a line parallel to the original defor-
mation line, Whether or not the system will “shake down” is clear from the
picture. It will shake down for values of Ppax and Prnin a8 shown; it would
not for the values Ppmin = — Ppax.

lP N ¥ 4

[*-C
T i ]
- \:L} E,Ae,,
(@) (%) VON KARMAN (c) SHANLEY
Fig. 6.—CoLumMn InsTaBILITY (PLASTIC)

In actual practice the structure will have several bars each with its own
' ) F,
=" would .
Y24, E/L,
be used instead of F,. The advantage is that the deformation line and the
equilibrium line become perpendicular to each other in the elastic range. The

2 P2, .
'S A B/, T A, BT, T
the elastic strain energy that must be a minimum for a given set of loads.

The same method may be used for the analysis of rigid frames and con-
tinuous beams on the limit design type of assumption,

value of force F, and the coordinates chosen are modified;

distance from the origin to the stress point

STRUCTURAL STABILITY

For many years it was felt that the problem of stability of columns in the
plastic work-hardening range was clearly understood in principle despite the




8 PLASTICITY OF METALS

fact that predicted loads were often appreciably higher then those found
experimentally. The method of analysis used was the same as that for elastic
columns. In the latter ease, the critical load is the load at which the equilib-
rium is neutral. Within the limitations of ordinary beam theory, at this load,
no force is required to displace the column from its straight configuration; and,
if displaced, the column will remain in the displaced position. The same |
procedure applied to the work-hardening range leads to formulas in which a
reduced modulus occurs, a combination of elastic and plastic moduli.

As F. R. Shanley® demonstrated in 1947, this method of attack does not
take into account all possibilities, and so ignores the actual one. Consider a
column of length L fixed at the bottom, free at the top (half of a hinged-end
column) loaded centrally by a force P (see Fig. 6(a)). Instead of asking the
question—“What happens if the top of the column is displaced at a given value
of P (Fig. 6(b))?”— it is necessary to follow the loading process and to consider
the possibility of deflection occurring as the load is increased (Fig. 6(c)). In
the latter case there need not be unloading of any point in the column, and
equilibrium may be maintained in the displaced position without a horizontal
force applied to the column. The necessary conditions for such an occurrence
for a small increment in load AP are that

AP =05 EiAem A oooeeeennneeiinn. (5)

in which E, is the plastic (tangent) modulus and Ae., is the maximum inerement
in strain. The column is here assumed symmetric in cross section. Moment
equilibrium must also be satisfied so that

Ps= 0—'5-‘”3—'64&{ ...................... (6a)

in which & is the lateral deformation of the top of the member. In terms of
the radius of curvature p,
po=Ed (6b).

A similar equation must be satisfied at each cross section:
E. I
PG~y = % ........................ ()

Eq. 7 is the same as the equation for elastic stability except that the tangent
modulus appears instead of the elastic modulus. Therefore, when

w2 B, I
SmEL ®

deflection can occur without application of horizontal forces providing P is
increased by AP or more. However, if the load AP is added and the column
is prevented from bending, P + AP does not make the column unstable.
Horizontal motion without horizontal force requires still another increment in

8 “Inelastic Column Theory,” by F. R. Shanley, Journal of the Aeronautical Sciences, Vol. 14, 1947,
pp. 261-268.
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load. This type of effect is instability only in the sense that two equilibrium
positions are possible. Both are stable; positive work must be done to displace
the column from either position. In practice, however, a column will not be
found perfectly straight at loads greater than those given by substitution of the
tangent modulus in the elastic buckling formulas. Nevertheless, large de-
flection (apparent buckling) may not occur until the load is appreciably above
this initial value; but it will occur below the von Kérman value. Mr. Shanley’s
concept reopens the entire field of plastic buckling; all previous solutions must
be re-examined. Many basic principles are still to be established.

pPyAp
F b (
a DIRECT YIEL ¢) SHANLEY
@ . ® AND VON K/?RM/(N TYPE

F1g. 7.—StrUCTURAL InsTABILITY (PLASTIC)

Another simple application to frameworks (Fig. 7) shows the differences
between the old and new viewpoints. As the load P is increased, the bars
become plastic but they work harden and will continue to carry additional
load without failing. Failure may occur in several ways. The ultimate load
is determined by the angle o and the shape of the stress-strain curve. When
side motion of the apex is prevented, the system will collapse vertically at a load:

2E; A cos® - '
P

P = ceveen..(9a)
No additional force is required to produce downward motion of the point of
application at P. However, if

p=2Bdsita (9b)

cosa

which has a much smaller value if @ is less than 45°, no external horizontal
force is needed to cause horizontal displacement of the apex (Shanley effect).
However, an increment in P will be required as in the case of the column.
This increment is not unique, it has its least value for the case in which one
bar takes on no additional load but does not unload (Fig. 7(c)). To obtain
the equivalent of a von Kérmdn instability load (Fig. 7(b)), it is necessary to
write the condition that P remains constant as lateral motion takes place
without horizontal force. ‘One bar will be found to unload and the value of P
required is larger than that when P is permitted to increase. Another possible
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mode of failure—the Shanley type of buckling of the bars themselves—should
also be considered.

MATHEMATICAL THEORIES OF PraAsTICITY

The mathematical work required becomes more elaborate in the more
complicated problems and is really formidable for general cases. It would be
convenient to ignore them and avoid trouble. Unfortunately, determination of
when deflections or stresses are excessive almost invariably involves plastic
behavior. Beams or girders often fail by local web or over-all plastic buckling;
and, as indicated in Fig. 4, the state of stress is not simple. At present, tests
are relied on to supply the answers and no result can be as satisfactory as a
careful test on the same structure or part. Tests are difficult, expensive, and
time consuming, however. Extrapolation of results without an adequate
theory is often misleading and tests covering all important cases are a physical
impossibility. "

Therefore, the next best procedure should be adopted: Develop as simple a
theory as possible which will be adequate for the problems on hand. Its
adequacy can be assured only by frequent experimental checks. It is by no
means obvious which factors should be included and which omitted, and the
final answer is still to be obtained. For example, time effects are customarily
assumed to be ignored in structural and machine applications; but, when con-
crete is involved and the time is long, this assumption would not be reasonable.

Neglecting the time

each stage in the plastic
deformation some function
of stress governs the con-
P, tinuing of the‘plasticaction.

In geometric language,

Octahedral or J,

Maximumshesr  oield or loading surfaces
> exist in stress space.!?
a, At any stage in the plastic

deformation, if the point
representing the state of
stress moves inside the sur-
face, elastic action only oc-
curs.” For a material that
has been work hardened,
Fie. 8.—S8gverAL YIELD CRITERIA if plastic action is to result,

the stress must change so

that the point representing it moves outside. Fig. 8 shows a few simple criteria
of yield or loading for two-dimensional stress, the octahedral shearing stress,
the maximum shearing stress, and the more genera! function of shearing stress
f(J2, J3) (J2 and J; being the second and third invariants of the stress devia-

% “Recent Developments in the Mathematical Theory of Plasticity,” by William Prager, Journal of
Applied Physics, March, 1949, pp. 235-241. )

10 *“The Bignificance of the Criterion for Additional Plastic Deformation of Metals,” by D. C. Drucker,
Journal of Colloid Science (rheology issue), Vol. 4, 1949, pp. 209-311.

Ao, : factor, it. follows that at -
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tion! and J; being proportional to the square of the octahedral shearing stress).
The yield surface, of course, is a yield curve in two dimensions. When there
is no work hardening (ideal plasticity), if the stress point reaches the yield
curve, flow occurs without limit for homogeneous states of stress. In work-
hardened material, the stress point does move outside and the yield or the load-
ing surface moves with it. A common but oversimple assumption is that the
same variables still control. A larger value of the loading function is now re-
quired to continue plastic deformation—for example, a greater octahedral
shearing stress equal to the largest one previously applied.

The concept of a loading function or of the variables that control plastic
deformation is one facet of a mathematical theory of plasticity. Another is
the actual form of the stress-strain relation. The simplest idea, and the one
which has been used most extensively, is that stress and strain are uniquely
related as long as loading continues (deformation theory). The stress-strain
relation is then identical with the one for nonlinear elasticity except that on
unloading a linear elastic recovery is assumed. One example of such equations
for work-hardening material has the following typical expression for loading:

€ = 5—(1;—) [osm— ¥ (g 4+ 00T ororonnnnnn. (10)

in which C (7,) is a plastic modulus, a function of the octahedral shearing stress
7o, and ¥ denotes a plastic Poisson’s ratio, often taken as 0.5. For unloading,

Ae, = %[Aa, — v (Agy + AT ... .aD

in which » is the elastic Poisson ratio and the symbols A indicate changes in
stress, ¢, and in strain, e.

The solution of general problems by this most elementary deformation
theory is very difficult and discourages attempts to improve theory. It is,
therefore, a most unpleasant fact that any deformation theory generally has ‘
validity only in the rare and special case in which all stresses remain fixed in
direction and merely increase in ratio. This particular case is precisely the
one most commonly used in obtaining test data. A thin-walled tube is loaded
. by a combination of direct pull, internal pressure, and, sometimes, torsion—-
increased in ratio. Therefore, some confusion has developed and some im-
proper applications of the deformation theory have been made. The incon-
sistency lies in the incompatibility of a quasi nonlinear elasticity and a yleld
or a loading function when all paths of loading are considered.

An incremental theory is required instead. There cannot be a unique
relation between stress and strain and only one relation for the increment in
strain in terms of the existing state and history and the changes in stress. The
simplest example of this type of theory has as a typical expression—

de, = %[da, — v (doy + do)] + aﬁ [0z — 0.5 (0, + 6.)]dre. . (12)

11 “‘Strain Hardenmg Under Combined Stresses,” by W. Prager, Journal of Applied Physics, Vol. 16,
1945, pp. 837-84




12 PLASTICITY OF METALS

—the sum of an elastic and plastic strain increment. Consistency with an
octahedral stress loading surface is assured because, if the octahedral shearing
stress does not change, dr, = 0, the increment in strain is purely elastic.
Actually much more elaborate expressions are required to fit just a few of the
observed important facts: The Bauschinger and allied effects and the Mohr
cirele comparison? introduced by W. Lode. In tensor notation, using the
summation convention, the most general form of incremental theory is

dei; = deijo + G o o 17 7% PR (13)

doi; don

in which f (the loading function) and G are functions of stress, strain, and the
history of stress and strain and de;;, . is the increment in the elastic or recoverable
strain.®1® The lodding function determines the incremental stress-strain law.

Tae Pata or LoapiNa

Another reason for the breakdown of the deformation type of theory, and
the philosophy behind it, is illustrated simply by the familiar three-wire problem
of elementary strength of materials (Fig. 9). This example shows the danger
of wishful thinking. The deformation type of theory is applicable when the
stress at each point increases in ratio; and, therefore, the hope was expressed
that, if all loads applied to a body increase in ratio, the stresses will do likewise.?®
The three-wire problem proves this hope to be vain. Many other simple
counterexamples can be found. Not only do the stresses not necessarily go
up in ratio but unloading may (and will) often take place locally.

* It seems preferable to describe

LLLLLLLLLLL, 7 the solution in words first: In the

£ elastic range, the load P applied to

Y A, ,/,srs-  the rigid bar of Fig. 9 is divided by
R L, E- the three wires in accordance with
i; 23 their stiffness (spring constant) and

! 3 the conditions of equilibrium. As-

a St sume the center wire to be strong

- F, —\ F but very flexible; imagine it tem-

! : porarily, for this step only, as a
rubber band. ~ The outer two wires

L Rigid bar 1 Wil both be stressed in tension.

1

*P _ Despite the smaller load carried by
the one on the left, this wire may
yield first because its areais smaller.
As the load P increases further, the force in the center and right-hand wires
will increase; and, if the areas are in proper ratio, the right-hand wire will
yield next. On continued loading, the central wire, which is elastie, will act as
a pivot, the rigid bar will rotate clockwise, and the left-hand wire will unload.

Fra. 9.—Loaping MaYy Propuce LocAr UnvroapiNe

12 *“The Relation of Experiments to Mathematical Theories of Plasticity,” by D. C. Drucker, Journal
of Applied Mechanics, Vol. 16, 1949, pp. 349-357.

13 “The Theory of Elastic-Plastic Deformation and Its Applications,” by A. A, Ilyushin, Izvestia,
Akademii Nauk U.S.8.R., Otdelenie Tekhnicheskikh Nauk, 1948, pp. 769-788.
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The preceding description applies equally well to ideal plasticity or to the
usual work-hardening stress-strain curves. Depending on geometry, and the
type of these curves, the system will perform various tricks. For example,
if the wires are really work-hardening bars capable of taking compression,
the left-hand one may be made to yield in tension, unload, load in compression,
yield, and unload again as the load P increases steadily.

The mathematical proof of unloading produced by loading merely requires
writing the equations of equilibrium and of deformation. The geometric rep-
resentation appears as Fig. 10. At all times, for equilibrium,

F1+F2+F3=P .................... (140/)
SFi+Fo—Fy=0.......0000iuiiinn. (14b)

and

In the elastic range,
F, L, + FaLs _
48 V4E A T e

P(ng_ L3>
Fi= A B A k) 16)

I, , 4L, La)
2(A1E'+A2E+A3E

8o that

2L, L;

I, E> 1. B For i
‘sufficiently small values of A1, Fi/ Iy
A, will exceed the yield stress o,

first (point A, Fig. 10); and, with .
the assumption of ideal plasticity,

F, = g, A:then replaces the elastic

deformation condition. As P in-

creases, Fy and F; increase equally CY

‘will be tensile if

and A; may be chosen to make bar
3 yield next point B (Fig. 10). At
this stage, two bars have yielded 0 Py
but collapse does not occur because J2Ea,
both have yielded in tension and Iy
the central bar is still elastic. The
third equation is now Fs = o, 45
and direct calculation shows that

F, must decrease as P increases i T
further from point B to point C. Jf-’;:ﬂ?
3

(Fig. 10).

If a reasonable extension of the
Saint Venant prineiple in plasticity , .
is accepted (an unreasonable one being easy to make), the case of bending plus
tension, of which the three-wire problem is really a particular case, exhibits
this same phenomenon. The case of torsion shows that the stress pattern
alters considerably from the elastic to the plastic state as loading proceeds,
although unloading does not oceur.

F1g. 10,—GEOMETRIC REPRESENTATION FOR THE
THREE-WIRE PROBLEM
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The combination of the probable change in the pattern of stress and the
possibility of unloading occurring locally makes it imperative that the history
of loading be followed in detail in calculating the final state of stress and strain
in a body that has been deformed plastically. Because of mathematical
complexity, few problems have been solved completely; but work is in progress

in many countries. Probably the most complicated problem solved so far is -

that of an infinite plate with & circular hole subject to unequal biaxial tension at
infinity in such ratio that the entire boundary of the hole is plastic. The
solution gives the stresses everywhere, and also the boundary of the plastic
" region under the assumptions of plane strain and ideal plasticity.'4

ConcLusioN

If practical answers are to be found to many engineering problems of im-

portance and the factor of safety is to be put on a firm calculable basis, a
large number of complicated plasticity problems will have to be solved. The
great expenditure of effort that will be required makes it desirable to use as
simple a theory of plasticity as is permissible for each problem. Much more
experimental information is necessary than exists at present. Work has already
been started and should continue on an expanded scale along the fruitful path
of investigating tubes under internal pressure, tension, and torsion where the
ratios are purposely varied during the test to check particular questions.

Strong efforts should be made to determine by experimental methods, in several :

fundamental cases, the importance of the Bauschinger and allied effects,
time effects, and the deviation from similarity of the Mohr circles for stress
and strain. Little should be taken for granted and all reasonable sounding
but unproved statements should be viewed with skepticism. Opinions on what
is important and what is not, such as those presented in this paper, may be
useful guides but may also be misleading. .
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